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then

di A
—= ——,
df f

dzi ehgt()——~sr#f)/2.—. — .
~– 2 fk

When f =fo (6200 mc),

dzi

()

7rzn
.—.

7 f=.fo f

Correspondence

(43)

(44)

(45)

Thus, to a first-order approximation valid over a

small frequency range around fo, the slope of Zi is linear

and positive with frequency, and hence the short-circuit

stub can be represented as an inductance L., in Con-

junction with a certain frequency variable, co’, given by

J = ( co-kl(l
C’Jlll+7r —

@o )
(47)

A similar argument applies to the open-circuit stubs,

the slope of the input admittance being linear and posi-

tive with frequency to a first-order approximation so

that the open-circuit stub

capacity C., in conjunction

fo;mation of (47).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
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can be represented as a

with the frequency trans-

C~ is given by

(farads, with respect to unity

impedance level).
(48)
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Correspondence

The Analogy between the Weiss-

floch Transformer and the Ideal At-

tenuator (Reflection Coefficient

Transformer) and an Extension

to Include the General Lossy

Two-Port*

Weissfloch’s transformer theorem states
that at certain pairs of reference planes a
lo:jsless two-port can be represented by an
ideal transformer. There are many proofs
of this important theorem. One of the most
interesting is due to Bolinder,l who uses
properties of the bilinear transformation.
For lossless two-ports, the transformations
w U belong to the Fuchsian2 group. This

* Receivedby the PGMTT, Febrmry, 1959;
revised,March,19S9.

I E. E. Bolinder, “Impedance and polarization—
ratio transformations by a graphical method wing
the isometric circles, ” lRE TRANS.ON MICROWAVE
TIIEORY AND TECHNIQUES, vol. MTT-4, W. 176-
180; July, 19S6.

~ L. R. Ford, “Automorphic Functions, ” 2nd cd.,
Cllelsea Publishing Co., New York, N. Y.; 19.51.

means that the isometricl,2 circles are orthog-

onal to the principal circle. In the reflection
coefficient plane (where Bolinder proves the

theorem), the principal circle is the unit
circle. The fixed points of the transforma-
tion will be on the unit circle or in a pair
inverse with respect to the unit circle.
Bolinder then uses lengths of Iossless line to
move the fixed points to the positions
J?= +1. In the impedance plane this cor-
responds to fixed points of O and cc. There-

fore the transformation can be written as
Z’= kzZ and the transformer theorem is

proven. The transformation through the
two-port at any pair of reference planes, in

either the reflection coefficient or the impe-
dance plane, can be done by inversion in the
isometric circles and a reflection in the line

of symmetry,a as described by Fordz and
Bolinder.l

The reflection coefficient transformer-
(ideal attenuator), described by Altschulter

~ If the transformation is loxodro mic, a rotation
must be added.

and Kahn,4 has a scattering matrix

OK
s=

() Ko

where K is a real number and, for an attenua-
tor, less than unity. The transformation in
the reflection coefficient plane is r’= KT,
while in the impedance plane the cor-
responding relation is

2(1 + K’) +(1 – K’)
.— . .

2K
~t= 2K .

2(1 – K’) + li-Kz
——— ——

2K 2K

The fixed points of this transformation are
A 1 in the impedance plane and O and m

in the reflection coefficient plane. Both
transformers produce hyperbolic transfor-

~ H. M. Altschulter and W. K. Kahn, “Nonrecipro-
cal two-ports represented by modified Wheeler net-
works, ” IRE TRANS.ON MICROWAVETHEORY Ah-D
:9?$HNIQUES, vol. MTT.4, Pp. 228–233; October,



474 IRE 1RANSACTIONS ON MICRO WAVE THEORY AND TECHNIQUES October

~athsns, since the trace of the normalized
transformation is real and its magnitude is
greater than twos At the proper reference

planes (where the transformations are the

same), problems involving one of the two-
ports per se in the impedance plane can be

solved considering the other two-port in the
reflection coefficient plane. It should be

pointed out that analogy will fail when the
reference planes are moved, because for the
loss-less two-port the transformation is
always nonloxodromic, while for the ideal at-
tenuator the transformation will become,
in general, loxodromic. It is also of interest

to note that the fixed points of the reflection
coefficient transformer are independent of

the choice of reference planes.
In the general case of a Iossy two-port,

it is shown in the Appendix that pairs of

reference planes can be found where the
transformation is nonloxodromic. At these
reference terminals the 10SSY two-port will
be analogous to the Iossless two-port which
has the same fixed points in the reflection
coefficient plane and which has the same
multipliers of the transformations in canoni-
cal form. This is true for all hyperbolic
transformations where the two fixed points
(the iterative impedances) have the same
magnitude, all parabolic transformations

(which have only one fixed point), and all

elliptic transformations where the phase

angles of the fixed points are equal. Thk

class of transformation includes all symmet-

ric networks with positive resistive com-

ponents. Therefore, for this special class of
lossy networks (eacj at its proper pair of

reference planes) the transformations belong
to the Fuchsian group. Therefore, any of the

several 10SSY networks can be ‘{replaced” (in
the sense that it has the same transforma-
tion) by an “analogous” Iossless network.
If the fixed points in the impedance plane
for a hyperbolic transformation do not have

equal magnitude, then a transformation is
used to map the fixed points in the imped-
ance plane into fixed points in the new

W plane with magnitude equal to unity and
for convenience equal to +1. In this W
plane, the analogy with the Iossless two-

port in the 11 plane holds. Similarly, for the
elliptic transformation, the fixed points in
the impedance plane are moved to points

inverse with the unit circle and an “anal-
ogous “ elliptic lossless network can be

found. Therefore, it has been shown that

any Iossy two-port can be “replaced” by an

‘analogous” Iossless network.

AN ALTERNATE VIEWPOINT

If the constructions for the isometric
circle method becomes unwieldy because of

the unbounded nature of Euclidean space,
the impedance and/or the reflection coeffi-
cient planes can be transformed into the
Cayley-Klein diagram (projective chart),
which has hyperbolic measure. The required
transformations are described by Bolindere

& There is an exception when either k or K i? unity,
but this is lossless oniform line, which is a trfwal case.

8 E. F. B olinder, “Graphical methods for trans-
forming impedances through losdess networks by the
Cayley-Klein diagram, ” Ada P02. Elec. Engrg.
Series, vol. 7, no. 5; 1956.

and Deschamps.TThe transformation of im-
pedances through lossless networks has
been treated by Bolinder.’ By analogy, the
transformation of reflection coefficients
through the “equivalent Iossless” network is
identical. Of course, it maybe found by the
user that the extended method (using the

Cayley-Klein Diagram) is simpler. This may
be true if Deschamps’T hyperbolic pro-
tractor is available.

Example

The symmetrical resistive network (re-
flection coefficient transformer) shown will

be considered in an illustration of the meth-

od (see Fig. 1). The resistance values were

work is a transformer in the Z plane, whose
Z matrix does not exist. Its A, B, C, D matrix

is

(

ti2+l o

0 )d–l “

APPENDIX

In general,

(.$2’ – sll.szzw+ &—.—
S12 S, _r, =

aI’+b

_ s,,r
—++

m+d
S1,

(Qd-bc)=l

,

r- 1 z

~1

0 . 0

Fig. l—Reflection coefficient transformer with arbitrary load.

chosen to locate the fixed points (iterative

impedances) at t 1 on the unit circle. If
this were not the case, the impedance level
could be adjusted. The input impedance is
found to be:

Z,=<2Z+1— .
Z+w

If this is compared with relation (1)

of the Appendix, an analogous transforma-
tion,

may be written if

s,, = L 1 1

G ’12 = * ‘2’=–*”

where

.s11 = I .s’11

S12 = I S12

S2, = I S22

Now, if we move reference planes 1 and 2
by electrical distances 81 and f3z along loss-

Iess lines, respectively,s

S1l’ = I SU I e$%lw~l)

S1S’ = I S12\ e~@12+~l+@J

SZ2’= I S22I e~@22~J.

Let #=& -to, (an electrical Iewth of trans-
mission line), and compute a+d

(1 – I .%,]’) sin IZ12 +
tan $ =

( [ S1, [’ – 1) Cos 4’12 –

It is noted that the analogous network is
lossless, since its scattering matrix is uni-
tary. While the original network is a trans-
former in the r plane, the analogous net-

T G. A. Deschamps, “New chart for the SOIUtion
of transmission-line and polarization problems, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-1 , pp. 5-13; March, 1953.

For the transformation to be nonloxodromic,
a +d has to be real. Setting the imaginary

part to zero, the result is

IS11S.22sin (OU-1-022– @12)

s,,.%, I Cos(%1+ *22 – %2) “
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