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L (43)

then
dz; 2 6 [\g
— = —sec? /2. — ( > (44)
af
When f=f, (6200 mc),
)\ 2
<_g> =~ 2 and 0=~1r—:
A 2
dz; TZn
)2 e
af Ji~to [

Thus, to a first-order approximation valid over a
small frequency range around fy, the slope of z; is linear
and positive with frequency, and hence the short-circuit
stub can be represented as an inductance L,, in con-
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that the open-circuit stub can be represented as a
capacity C,, in conjunction with the frequency trans-
formation of (47). C, is given by

C. = Yn (farads, with respect to unity
=

wo impedance level). (48)
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The Analogy between the Weiss~
floch Transformer and the Ideal At-
tenuator (Reflection Coefficient
Transformer) and an Extension

to Include the General Lossy
Two-Port*

Weissfloch’s transformer theorem states
that at certain pairs of reference planes a
lossless two-port can be represented by an
ideal transformer. There are many proofs
of this important theorem. One of the most
interesting is due to Bolinder,! who uses
properties of the bilinear transformation.
For lossless two-ports, the transformations

will belong to the Fuchsian? group. This

* Received by the PGMTT, February,
revxsed March, 1959,

E. olmder “Impedance and polanzatlon——-
ratlo transformations by a graphical method using
the isometric circles,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 176~
180 July, 1956.

Ford, “Automorphic Functions,” 2nd ed.,
Chelsea Pubhshmg Co., New York, N. Y,; 1951.

1959;

means that the isometric! -2 circles are orthog-
onal to the principal circle, In the reflection
coefficient plane (where Bolinder proves the
theorem), the principal circle is the unit
circle. The fixed points of the transforma-
tion will be on the unit circle or in a pair
inverse with respect to the unit circle.
Bolinder then uses lengths of lossless line to
move the fixed points to the positions
T'=+1. In the impedance plane this cor-
responds to fixed points of 0 and . There-
fore the transformation can be written as
Z'=FkZ and the transformer theorem is
proven. The transformation through the
two-port at any pair of reference planes, in
either the reflection coefficient or the impe-
dance plane, can be done by inversion in the
isometric circles and a reflection in the line
of symmetry,® as described by Ford? and
Bolinder.}

The reflection coefficient transformer-
(ideal attenuator), described by Altschulter

3 If the transformation is loxodromic, a rotation
must be added.

and Kahn, has a scattering matrix
0 K
s=(
K 0

where K is a real number and, for an attenua-
tor, less than unity. The transformation in
the reflection coefficient plane is I'=X?T,
while in the impedance plane the cor-
responding relation is
ZA+EY (1= KY
2K 2K
Z(1 —K“’)+ 1+ K2
2K 2K

z =

The fixed points of this transformation are
+1 in the impedance plane and 0 and «
in the reflection coefficient plane. Both
transformers produce hyperbolic transfor-

4+ H. M, Altschulter and W, K. Kahn, “Nonrecipro-
cal two-ports represented by modified Wheeler net-
works,” IRE TRANS, ON MICROWAVE THEORY AND
TESCHNIQUES, vol. MTT-4, pp. 228-233; October,
1956.
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mations, since the trace of the normalized
transformation is real and its magnitude is
greater than two.5 At the proper reference
planes (where the transformations are the
same), problems involving one of the two-
ports per se in the impedance plane can be
solved considering the other two-port in the
reflection coefficient plane. It should be
pointed out that analogy will fail when the
reference planes are moved, because for the
loss-less two-port the transformation is
always nonloxodromic, while for the ideal at-
tenuator the transformation will become,
in general, loxodromic. It is also of interest
to note that the fixed points of the reflection
coefficient transformer are independent of
the choice of reference planes.

In the general case of a lossy two-port,
it is shown in the Appendix that pairs of
reference planes can be found where the
transformation is nonloxodromic. At these
reference terminals the lossy two-port will
be analogous to the lossless two-port which
has the same fixed points in the reflection
coefficient plane and which has the same
multipliers of the transformations in canoni-
cal? form. This is true for all hyperbolic
transformations where the two fixed points
(the iterative impedances) have the same
magnitude, all parabolic transformations
(which have only one fixed point), and all
elliptic transformations where the phase
angles of the fixed points are equal. This
class of transformation includes all symmet-
ric networks with positive resistive com-
ponents. Therefore, for this special class of
lossy networks (eacj at its proper pair of
reference planes) the transformations belong
to the Fuchsian group. Therefore, any of the
several lossy networks can be “replaced” (in
the sense that it has the same transforma-
tion) by an “analogous” lossless network.
If the fixed points in the impedance plane
for a hyperbolic transformation do not have
equal magnitude, then a transformation is
used to map the fixed points in the imped-
ance plane into fixed points in the new
W plane with magnitude equal to unity and
for convenience equal to +1. In this W
plane, the analogy with the lossless two-
port in the T plane holds. Similarly, for the
elliptic transformation, the fixed points in
the impedance plane are moved to points
inverse with the unit circle and an “anal-
ogous” elliptic lossless network can be
found. Therefore, it has been shown that
any lossy two-port can be “replaced” by an
“analogous” lossless network,

AN ALTERNATE VIEWPOINT

If the constructions for the isometric
circle method becomes unwieldy because of
the unbounded nature of Euclidean space,
the impedance and/or the reflection coeffi-
cient planes can be transformed into the
Cayley-Klein diagram (projective chart),
which has hyperbolic measure. The required
transformations are described by Bolinder®

5 There is an exception when either k or K is unity,
but this is lossless uniform line, which is a trivial case.
¢ E. F. Bolinder, “Graphical methods for trans-
forming impedances through lossless networks by the
Cayley-Klein diagram,” Acta Pol. Elec. Engrg.
Series, vol. 7, no. 5; 1956.
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and Deschamps.” The transformation of im-
pedances through lossless networks has
been treated by Bolinder.® By analogy, the
transformation of reflection coefficients
through the “equivalent lossless” network is
identical. Of course, it may be found by the
user that the extended method (using the
Cayley-Klein Diagram) is simpler. This may
be true if Deschamps’? hyperbolic pro-
tractor is available,

Example

The symmetrical resistive network (re-
flection coefficient transformer) shown will
be considered in an illustration of the meth-
od (see Fig. 1). The resistance values were

V2 —|

—

October

work is a transformer in the Z plane, whose
Z matrix does not exist. Its 4, B, C, D matrix
is

|
z' o

(\/2 +1 0 )
V2—-1/"
APPENDIX
In general,
(Si2® — _511522)1' :Slx_
= S12 S12 _ all +b
Sel' 1 T 44
Stz + Ste
(ad — b¢) =
ve —I
Z
oY
a®s

Fig, 1—Reflection coefficient transformer with arbitrary load.

chosen to locate the fixed points (iterative
impedances) at +1 on the unit circle, If
this were not the case, the impedance level
could be adjusted. The input impedance is
found to be:

\/E Z+ 1
A \/2
If this is compared with relation (1)

of the Appendix, an analogous transforma-
tion,

7 =

= \/QI‘ + 1
T+ \/2
may be written if
1 1 1
Su:ﬁ 512=7§ S22=—ﬁ.

where
Su = l Su! eibn
S12 = [ Slzl gid

Sz2 = | Saz| eiom.

Now, if we move reference planes 1 and 2
by electrical distances 6, and 6: along loss-
less lines, respectively,8

Sn’ = I S| efyt2en
Sy’ = l szl €7 @y toLHeD)
Sag’ = l Szzl & (D52

Let ¢ =6;-+0: (an electrical length of trans-
mission line), and compute a+d

[ Sz lz o) — I SuSzzl el Dut gt ) 4 1

¢e+d=

I Sig| 6 (@2 ¥

For the transformation to be nonloxodromic,
a+d has to be real. Setting the imaginary
part to zero, the result is

(1 — | Siz?) sin = + | SuSez| sin (B + S — 1) .

tan =

It is noted that the analogous network is
lossless, since its scattering matrix is uni-
tary. While the original network is a trans-
former in the T plane, the analogous net-

7 G. A. Deschamps, “New chart for the solution
of transmission-line and polarization problems,” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-1, pp. 5-13; March, 1953.

([ Slzlz —_ 1) cos P12 — l SuSzz] cos (q>11 + Pgg — ‘Pm)
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8 C. G. Montgomery, R, H. Dicke, and E. M,
Purcell, “Principles of Microwave Circuits,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1948,



